

White paper

DISCLAIMER

The governing law for the purpose of this whitepaper is the laws of Switzerland. This

whitepaper is for information purposes only and may be subject to change without prior

notice. NOTHING HEREIN CONSTITUTES LEGAL, FINANCIAL, BUSINESS OR TAX ADVICE AND

YOU SHOULD CONSULT YOUR OWN LEGAL, FINANCIAL, TAX OR OTHER PROFESSIONAL

ADVISOR(S) BEFORE ENGAGING IN ANY ACTIVITY IN CONNECTION HEREWITH. Taal DIT

GmbH ("Taal") does not make or purport to make, and hereby disclaims, any

representation, warranty or undertaking in any form whatsoever to any entity or person,

including any representation, warranty or undertaking in relation to the accuracy and

completeness of any of the information set out in this whitepaper. Taal accepts no liability

for damages, whether consequential or indirectly, of any kind arising from the use,

reference, or reliance on the contents of this whitepaper.

This whitepaper may contain references to third party research, data and industry

publications. No warranty is given to the accuracy and completeness of this third party

information. Neither the third-party information, its inferences nor its assumptions have

been independently verified.

Scope of Document

The white paper provides an overview and introduction to Bitcoin, the

protocol of Bitcoin SV, and knowledge required to explore the STAS

tokenization solution. The actual detailed explanation over the STAS

tokenization life cycle and the functionalities can be found in the technical

documentation that can be obtained once registered on the TAAL Console

or by contacting TAAL through the commercial team.

Further this is a living document and TAAL reserves the right to publish a

new version as deemed necessary as we further develop the STAS as a

token solution.

The white paper describes STAS and not the licensing model behind the

token solution as such.

Audience

The audience of the white paper is intended for developers and end users,

who are evaluating and interested in implementing a tokenization solution

build on the Bitcoin native script.

Document revisions

Version Date Author

Initial draft 10. October 2020 Jerry Chan

Updating and final version
1.0

14. January 2022 Simon Giselbrecht

Acronyms, Abbreviations, and Definition

Acrondyms/Terms Abbreviations/Definition

API Application Programming Interface

Blockchain It is a form of distributed database (or ledger) that

acts as a record of all the valid transactions, which are

transmitted to the blockchain network.

BSV Bitcoin Satoshi Vision

BSV Bitcoin Core

CPU Central Processing Unit

ECDSA Elliptic Curve Digital Signature Algorithm

F-NFT Fractionalized Non-fungible Token

NFT Non-Fungible Token

PKH Public Key Hash

P2PKH Pay-to-Public Key-Hash

SDK Software Development Kit

SIT Safe Instant Transactions

Sats Satoshis

It is the smallest division of a Bitcoin and the base unit

of exchange in the BSV network. There are 100,000,000

Satoshis in 1 Bitcoin.

SSD Solid-State Drive

STAS Substantiated Tokens from Actualized Satoshis

It is the tokenization standard described in this paper

and allows to assign properties to Bitcoins or Satoshis.

Token It is a type of digital property or control element that

can be transferred using a blockchain.

TXID Transaction Identifier

USD United States Dollar

UTXO Unspent Transaction Output

It is an accounting method used in Bitcoin, and it

refers to a balance of a BSV coin address that is

controlled by a specific token.

VOUT Selects an output of the previous transaction

Contents
1 Introduction ... 1

1.1 Bitcoin SV ... 1

1.2 UTXO accounting method ... 2

1.3 Token ... 5

1.4 STAS (STAS tokens) .. 7

2 Overview of tokenization .. 8

2.1 Token types ... 9

2.1.1 Fungible tokens .. 9

2.1.2 Non-fungible token (NFT) ... 10

3 Creating and submitting transactions .. 11

3.1 Components of a transaction ... 11

3.2 Mine a new block to the blockchain ... 12

3.3 Blockchain transaction components .. 15

3.3.1 Input ... 16

3.3.2 Output .. 16

4 Token “Smart Contract” Deployment Model ... 18

4.1 Token Contracts on BSV ... 18

4.2 STAS Tokenization Script ... 19

4.3 How to use STAS ... 21

4.3.1 Special Restrictions on Outputs via Smart Token Scripts 21

4.3.2 STAS Token lifecycle explained .. 22

4.3.3 STAS Layer 0 Architecture .. 26

4.3.4 Locking TX Outputs ... 27

4.3.5 The Variable Component ... 30

4.3.6 Constant Component (Token Mechanics).. 31

4.3.7 STAS token Transaction Chain and Authenticity Checks 34

4.3.8 STAS Transaction Sequence .. 35

4.3.9 A Public Overlay Network of Authenticity Verifiers 37

4.3.10 Comparison of BSV Layer Token solutions 38

4.4 STAS Satoshi’s to Value explained .. 39

4.5 Tokenization with STAS benefits ... 41

5 Appendix ... 43

5.1 Tokenization solution layers .. 43

5.1.1 Layer 2 architecture .. 43

5.1.2 Hybrid architecture ... 44

5.1.3 Layer 1 architecture ... 44

5.2 STAS functionality ... 45

Table of figures
Figure 1: Showing an example of spending of tokens .. 4

Figure 2: Merkle tree example (Source: see Bitcoinsv.io) 13

Figure 3: STAS Token Lifecycle .. 23

Figure 4: Layer 0 architecture of STAS ... 27

Figure 5: Components of a STAS “Smart Token” locking script; a P2STAS
template ... 28

Figure 6: Valid transactions involving STAS outputs .. 34

Figure 7: Creation of STAS tokens; transformation happens at the Issuance
transaction ... 36

Figure 8: Typical flow of STAS contract and issuance (origin) transaction
and transfers .. 37

Figure 9: The value representation spectrum of Bitcoin’s Satoshis (Sats) .. 40

Figure 10: Layer 2 architecture .. 43

Figure 11: Hybrid architecture .. 44

Figure 12: Layer 1 architecture ... 45

1

1 Introduction
TAAL aims to offer a token solution that enables companies, individuals, and

organizations to mint, transfer, and redeem tokens using our native Bitcoin-

based STAS scripts.

The STAS script uses the Bitcoin (BSV) protocol, a permissionless public

blockchain protocol that makes any asset decentralized once processed and

removes the need for any third parties to be involved in moving said asset

back and forth. A token can represent a contractual claim over an asset and

allow any type of information and / or data to be tokenized.

The STAS digital asset tokenization is an on-chain native Bitcoin script-based

solution. It enables you to build token solutions for any number of use cases.

TAAL provides a Software Development Kit (SDK) that wraps the STAS script,

which locks or unlocks Satoshis enabling you to create and send tokens in

the form of raw transactions to the BSV blockchain, and to read the tokens

using the Application Programing Interface (API) by using whatsonchain.com.

1.1 Bitcoin SV
The vision of Bitcoin Satoshi Vision (short BSV) is to facilitate a world money

on the model outlined in the original Bitcoin white paper. To achieve this goal

the BSV ecosystem forked BCH, increased the maximum block size, and

restored certain functionalities (including the ability to deploy smart

contracts and thus allow the creation of tokens) of the Bitcoin scripting

language. BSV is a peer-to-peer electronic cash blockchain that allows

various use cases to be built on top of this programmable money.

One of the main advantages of using BSV is the ability to create a large

number and variety of transactions at low fees. As of January 17, 2022, the

fees per transaction are $0.00065 USD.

2

Another key advantage of the BSV blockchain technology over others is the

underlying Bitcoin protocol that removes trusted intermediaries from the

payment process and allows competition between the miners to eternalize

the transaction. That feature allows for fair pricing of the transaction fees.

Blockchain’s ability to process a large volume of transactions for a fraction

of a penny in near real-time is one of the technology’s primary promises that

BSV fulfills. BSV will roll-out Teranode, which will lower the transaction cost

even further and allow for the processing of millions of transactions per

second.

The main benefits for developers and businesses to adopt BSV are best

summarized as follows:

• Professional Standardization: Provided by the BSV Technical Standard

Committee

• Stability: Enables businesses to plan years in advance and commit

significant resources to build on a stable protocol

• Scalability: Delivers capacity increases through scalable architecture

and the miner-configurable block sizes

• Security: Provides the best practice change management processes,

external security audits, and lucrative bug-bounty program

• Safe Instant Transactions (SIT): Unlocks the bricks-and-mortar

merchant market and enables new business models with

micropayments and nano services.

1.2 UTXO accounting method
In blockchain there are two main types of record-keeping models in use. The

first method is called the UTXO (Unspent Transaction Output) model and the

second one is the Account/Balance Model. The UTXO model is employed by

Bitcoin while Ethereum uses the Account/Balance Model.

3

• In UTXO, a user’s wallet keeps track of a list of unspent transactions

associated with all addresses owned by the user, and the balance of

the wallet is calculated as the sum of those unspent transactions.

• The Account/Balance Model, on the other hand, keeps track of the

balance of each account as a global state. The balance of an account

is checked to make sure it is larger than or equal to the spending

transaction amount.

To understand the mechanics of the STAS script logic and its ability to create

"smart contracts” from UTXOs, it is important to delve into the preferred

method.

A simple way of understanding the UTXO model is to compare it to a triple-

entry-bookkeeping ledger. For simple illustration purposes let’s use the

following logic:

Bob wants to go shopping and wants to visit five shops, but he only has a

single $50 bank note. He can go to the bank and exchange the $50 note for

five $10 notes and pay a fee for the transaction, or he can go to the first

store and pay for his purchase with his $50 note, get the change back, and

continue shopping in the other four stores on his list.

At the start of his shopping spree, the entire balance of $50 can be viewed

in his wallet and is categorized as unspent cash. After he visits the first store,

his purchase is recorded and the unspent amount he holds becomes smaller.

It continues to dwindle as he visits each subsequent store until he has spent

the entire amount in his wallet. On the other side of the transactions, the

shops all have added to the total amount in their cash register.

4

Figure 1: Showing an example of spending of tokens

With the more sophisticated logic of the UTXO model, a transaction becomes

an output that has locked an amount of the digital currency in a way that

can only be solved or unlocked by the possessor of the correct digital key —

most likely, Bob the shopper. If Bob spends a certain amount, then that

amount is removed from the UTXO set. In this case, UTXOs are processed

continuously and are responsible for starting and ending each transaction.

The confirmation of transaction results in the removal of coins spent from

the UTXO set, but a record of the coins spent still exists on the ledger. Such

as shown in Figure 1 above, the overall balance of cash out of Bob’s wallet

lowers his balance.

5

A UTXO database is used to store output from the cryptocurrency

transactions. This database is initially set as zero. As transactions take place,

the database is populated with the various transactions outputs. Such as

showing in Figure 1 above, Bob has spent his cash as outputs from his wallet,

whilst the shops have received a payment as an input that can be spent for

buying new things. The ledger in this case is not a publicly visible one.

However, in the concept of BSV and our STAS token solution, the balances

can all be viewed on the public ledger over a blockchain explorer. A

blockchain explorer allows anybody to view the content to prove the

accuracy of transactions that have been processed by a miner who validated

and verified the transaction before it was mined and stored immutably on

the public ledger (which can also be referred to as a public cloud consisting

of information and data).

Bitcoins can be transacted in fractions of up to 10^-8 Bitcoin. The spending

does not take place using single bytes, rather the multiple chunks (UTXOs)

are retrieved by the wallet logic to fulfill a spending request. For example, a

purchase worth 1 Bitcoin can use one UTXO with a value of 0.7 BT and another

with a value of 0.5 BSV. The change from each of these fractions is a new

output, which is added to the UTXO set and can be spent later.

1.3 Token
BSV reinstated the original Bitcoin protocol and has now made it possible to

build tokens and smart contracts directly on Bitcoin.

Bitcoin allows tokens or smart-contract solutions to be built using on-chain

or off-chain applications (e.g. run.network or tokenized.io).

6

In terms of this white paper, we define a token as a type of digital property

or control element that can be transferred using blockchain. In blockchain

technology, you can create and define a token using specific data fields

within a transaction. The users of the blockchain or a particular token

protocol can interpret the additional data (token data). The embedded data

usually contains contractual information, which is legally binding, for the

person minting (or issuing) the token but also essential information for

others to use and redeem back for the underlying value the token may have.

Most tokens represent a form of unilateral contract.

The validity of a token transaction in STAS is defined by a valid Bitcoin script

and no other outside oracles. The user to whose address the output is locked,

owns the token. If you are the user, you can use, sell, or trade the token for

a particular purpose according to the token protocol.

As example:

• A cinema company can issue cinema tokens that represent tickets o

users, who can pay for each token in return for watching a film at the

cinema. The token in this case is essentially a ticket that can be

collected and redeemed again by the issuer.

• A bank can issue tokens in exchange for its clients’ USD deposits,

which can be used by the clients to make regular payments and later

exchanged back at the bank for USD by third parties.

7

1.4 STAS (STAS tokens)
Tokenization is the concept of issuing a digital token that represents a real-

world asset such as stocks, bonds, real-estate holdings, as well as event

tickets and travel cards, loyalty points, casino chips, and much more that

can be issued and redeemed in a fungible (e.g. be traded on exchanges as a

standardized good) or non-fungible token (representing a unique digital

property). STAS is an ideal token solution for tokens for two reasons: BSV

allows scaling based on the throughput capacity needed to support token

requirements at the enterprise level while keeping transaction fees

extremely low. Both the STAS token solution and the BSV ecosystem are

compliant-compatible, making it easier for token issuers and professional

users to comply with relevant laws and regulations. A security token or asset

token can be issued but at the same time the solution can be used for

countless other purposes, thus requiring less regulatory scrutiny.

STAS enables an issuer to convert a generic amount of unsubstantiated

Satoshis (Bitcoin) into a minted token in a transparent and open fashion. It

is a contract stored in the public BSV blockchain that can be transferred

through the BSV network peer-to-peer. If the contract represents a

redeemable claim, it can be used to collect this claim from the issuer.

8

2 Overview of tokenization
The popularity of Bitcoin has revolutionized how investments and assets are

issued, managed, and transacted.

Blockchain enables an asset to break down into smaller units, representing

ownership, encouraging the accessibility of investment and ease of use in

handling them. This attribute leads to a transparent and fair market. It also

allows assets that previously had no global market to become liquid.

Everything can be tokenized and issued on a distributed ledger, such as

fractions of paintings, digital media platforms, real-estate property, company

shares, loans, collectibles, and many more.

Tokenization is a process by which an issuer creates digital tokens on a

distributed ledger or blockchain. The tokens represent digital or physical

property, or a control element. Blockchain confirms that once you buy tokens

representing an asset, any single authority cannot erase or change your

ownership, and it remains immutable.

For example, consider you have a property worth $500,000 in Vienna.

Tokenization can convert ownership of the property into 500,000 tokens, and

each one represents a tiny percentage (0.0002%) of the property. Consider

you need to borrow $50,000, and you do not want to sell your property as

you need a place to live. Instead of selling the house, you issue tokens on a

public distributed ledger, like BSV, using the STAS tokenization scripts, which

enables people to freely buy and sell on different exchanges. When someone

buys a token, they buy 0.0002% of the ownership in the asset. It is required

to buy 500,000 tokens to become 100% owner of the property. In the case of

BSV the distributed ledger is immutable, and hence no one can erase the

ownership of the investor, who has bought the tokens.

9

Tokenization offers for both fractional ownership and proof-of-ownership.

You can tokenize assets, like venture capital funds, bonds, commodities,

sports teams, racehorses, artwork, real-estate properties, celebrities, and

anything worth tokenizing. In these cases, Bitcoin acts like “smart paper”.

The Bitcoins are a commodity that can be used to change the Bitcoin ledger.

STAS scripts are like taking that commodity and printing something onto it

with smart ink. When the “paper” is returned it can be fully recycled by the

issuer.

2.1 Token types
There are various types of definitions of token classifications. For simplicity,

we will categorize the tokens into the following main types: fungible and

non-fungible tokens.

2.1.1 Fungible tokens

In a Fungible token, each unit of the tokenized asset has the same market

value and validity. For example, in a Bitcoin, all units of 1 BSV are the same,

and have the same market value and are interchangeable. It does not matter

from whom a BSV was purchased, as all BSV units have the same

functionality and are part of the same network. You can swap one-fourth of

a BSV with someone else’s one-fourth of a BSV, with confidence that your

one-fourth of a BSV holds the same value, even if it is one-fourth of a

different coin. A fungible cryptocurrency can be divided into as many decimal

places, which are configured during its issuance. Each of the smallest units

will have the same value and validity.

10

2.1.2 Non-fungible token (NFT)

Non-fungible tokens cannot be replaced with tokens of the same type

because each token represents a unique instance. Each token differs from

another token of the same type and has unique information and attributes.

The tokens can have a high degree of ingenuity within each one. They can

also be a digital ticket that is valid for a specific day and seat and will carry

the properties required to create this distinctiveness. NFTs are not divisible,

although the Fractionalized NFTs (F-NFTs) offer fractional ownership of

NFTs, a feature that can be attractive for buyers of expensive fine art or

commercial real estate.

11

3 Creating and submitting transactions
To fully understand how STAS works it is important to gain some level of

understanding over how a Bitcoin transaction is created, signed, validated,

and submitted to the blockchain.

3.1 Components of a transaction
As previously stated, a blockchain is a form of distributed database (or

ledger) that acts as a record of all the valid transactions, which are

transmitted to the blockchain network once validated by node.

The valid transactions broadcasted on the network are recorded on the

blockchain by miners (or mining nodes) in blocks. A blockchain transaction

is used to transfer control or custody of an amount of a digital asset.

Each transaction includes:

• Input: An input includes a reference to an UTXO from a previous

transaction. A transaction uses UTXOs as inputs and distributes their

value to the new outputs.

• Output: An output includes a locking condition that locks the value of

the output, and certain data (e.g.: a set of signatures), to be provided

in an input of a new next transaction to be unlocked. Outputs can also

be used to inscribe data, such as text, images, and so on, onto the

ledger.

An input of a transaction includes a digital signature that signs over at least

part of the transaction. Therefore, a chain of transactions includes a chain

of digital signatures that map the entire history of valid exchanges of the

digital asset all the way back to its origin. The blockchain begins with a

genesis block, which is the first block ever created. The nth block references

the n – 1th block, the n – 1th block references the n – 2th block, and so on,

back to the genesis block.

12

A block contains an ordered list of blockchain transactions and a block

header. The block header includes:

• a Merkle root, which is generated by hashing the ordered list of

blockchain transactions into a Merkle tree

• a timestamp

• a reference to the previous block, which the present block builds upon

and the means to validate the proof-of-work required for other miners

to accept the block as valid. The validation is a hash puzzle, which is

unique to each block.

The blockchain protocol run by mining nodes of the blockchain network uses

a hashing algorithm that requires the miners to pre-build their candidate

block before trying to solve the hash-puzzle. The new blocks cannot be

submitted to the network without the correct answer. The process of mining

is the process of competing to be the next to find the answer that solves the

current block. The hash puzzle in each block is difficult to solve, but once a

valid solution is found, it is very easy for the rest of the network to confirm

that the solution is correct. There are multiple valid solutions for any given

block, only one of the solutions needs to be found for the block to be solved.

3.2 Mine a new block to the blockchain
When a blockchain transaction is transmitted to a mining node, it is first

validated according to the consensus rules of the blockchain network. If the

transaction is valid, it is added to a pool of unconfirmed transactions. This

pool is called a mempool. The mempool acts as a temporary store of

transactions to be mined into the next block. Each mining node has its own

mempool, and any given transaction can be included in more than one

mempool if it is broadcast to more than one mining node (most transactions

are also shared between miners).

13

A miner takes the transactions and includes it in the next block. The miner

hashes the transactions into a Merkle tree structure and includes the

resulting Markle root within a candidate block header. The miner then hashes

this candidate block header to find a valid proof- of-work. A Merkle tree is a

data structure in the form of a tree of hash values. In the context of the

blockchain, a transaction is hashed to form a leaf node of the tree. The pairs

of leaf nodes are concatenated and hashed to form a node in a higher layer

of the tree. The pairs of nodes in this layer are further concatenated and

hashed to form a node in a higher layer of the tree. This process is repeated

until a single node — called a root node or the Merkle root — remains.

Figure 2: Merkle tree example1 (Source: see Bitcoinsv.io)

1 https://wiki.bitcoinsv.io/index.php/Simplified_Payment_Verification

about:blank

14

A hash function converts a string of data of arbitrary length into a fixed length

with unique value that is called the hash value or a hash digest. Hashing is a

one-way function. That is, it is not feasible to determine what the input data

is by looking at the hash value produced from it. Also, it is important to run

the same input data through the same hash function and reproduce the same

hash. The blockchain protocols use the SHA-256 hashing algorithm. The

certain blockchain protocols use the SHA-256 hashing algorithm twice. That

means the candidate block header is passed through the same hashing

algorithm two times.

A valid transaction is found by hashing the candidate block header (in

combination with other data) until the result is less than another value

(called the target value).

A mining node must add the additional information to the candidate block

header to change the hash value. The mining nodes use two nonce fields to

alter the value to be hashed, and thus alter the resulting hash value. A

coinbase transaction is a transaction created and included in the candidate

block by the mining node. Each field includes a counter parameter that can

be incremented. The hash function cycles through all values of the first

nonce field, and then increments (or otherwise changes) the second nonce

field before going through all permutations of the first nonce field again.

Incrementing the second nonce field involves recomputing the Merkle root

as it modifies the hash of the coinbase transaction, which is included in the

Merkle tree.

15

When a mining node finds a valid hash for a block (that is, a candidate block

header that hashes to a value less than the target value), it broadcasts the

new block to the rest of the blockchain network. The other nodes on the

network accept the new block only if all the transactions in it are valid UTXOs

that have not been consumed in an earlier block. Every block is timestamped

and references the hash of the block preceding it, thus resulting in a chain

of blocks called a blockchain.

3.3 Blockchain transaction components
The following table is the schematic representation of the structure of a

transaction according to the Bitcoin protocols. A transaction is made up of

the serialized set of data fields, which are represented in hexadecimal.

Table 1: Structure of a transaction

16

3.3.1 Input

A transaction has one or more inputs, each input references an output of a

previous transaction. Each transaction consumes as input 1-n outputs of one

or several previous transaction(s). Each input includes an unlocking script. If

the unlocking script includes the correct data, it will unlock the referenced

output and consume it. An unlocked output of a previous transaction or the

amount of the digital asset previously locked to the output can be spent by

an output of the current transaction. The unlocked amount of the digital

asset can be spent in its entirety by a single output or distributed across

more than one output of the current transaction.

Table 2: Structure of input(s)

3.3.2 Output

A transaction has one or more outputs, which together distribute the total

amount of the digital asset unlocked by the inputs. The sum of the output

values is usually less than the sum of the input values, and the difference is

the fee to the mining node that records the transaction in a new block.

An output can be one of the following:

• Spendable output (i.e. Spend money): A spendable output includes a

locking script (referred as ScriptPubKey), which defines one or more

conditions that must be satisfied to unlock an input in the future

transaction.

17

• Unspendable output (i.e. Op_Return): An unspendable output does not

contain a locking script that can be unlocked. If the unspendable

output contains a locking script, it can cause failure in the execution

of the locking script.

Table 3: Structure of output(s)

18

4 Token “Smart Contract” Deployment
Model

To understand BSV token solutions, it is required to provide an overview

first, before diving into the details of STAS.

4.1 Token Contracts on BSV
BSV network supports a wide range of smart contracts that are based on

using the scripting language known as Bitcoin script. Many concepts of

tokenization or issuance of smart contracts follow a common logic where

tokens that are issued effectively create new token units on layers on top of

BSV and require different layers of logic to be run on top of it (see appendix

for examples of token architectures).

In the past, Bitcoin script was in many ways perceived as an unfriendly base

layer blockchain to deploy smart contracts on as it has limited capabilities

over the state and is mainly used to create, store, and transfer an asset using

Bitcoin. This is what was supposed to be solved with Ethereum. Some

contracts are inherently stateful in that they require contracting parties to

interact in multiple stages and depend on time-varying states, such as on-

chain corporate action voting for security tokens.

19

One of the most powerful inventions on the BSV blockchain was the

introduction of the concept for the usability of OP_PUSH_TX that allows

deployment of smart contracts. An OP_PUSH_TX contract in a locking script

is divided into code and data allowing it to become readable on-chain

through a blockchain explorer such as whatsonchain.com. OP_PUSH_TX

allows inspection of the entire transaction inside a contract, including all

inputs and outputs. This opens boundless possibilities for all kinds of smart

contracts on Bitcoin and can be built in using any token Layer architecture

(Layer-0: on-chain or native Bitcoin script and all information is stored on-

chain; Layer 1: integration layer that uses some off-chain features to store

information; Layer 2: application layer that uses agents or virtual machines

to store information off-chain). A more detailed explanation is given in the

Appendix section. This is the case for Layer 1 and Layer 2 solutions where

the token logic is represented off-chain by running proprietary code on

proprietary servers, and thus a certain amount of trust needs to be assigned

to the platform itself.

4.2 STAS Tokenization Script
The benefits of STAS tokens are that they do not require any additional

processing logic beyond that of basic Bitcoin script itself. Given the fact that

the tokens themselves are Satoshis we can have many things that previously

required third-party actions to be performed automatically by revealing the

right set of keys. Those keys would allow the locking / unlocking of a token

from being issued, transferred, traded, and redeemed. With the proper

identity / key management systems a third-party accounting and auditing

firm could work directly off the public blockchain to do a company’s year-

end filing and tax reporting.

20

Additionally, since STAS operates as a regular Bitcoin output, wallets can

implement standard protocols for creating digital invoices such as BIP2702,

which allows merchants to create invoices by way of a customized payment

template. As STAS uses Bitcoin as a ledger, complex payment options can

be made using STAS-based stable coins. For example, one feature of STAS

allows for portions of a payment to be made in BSV or a token representing

fiat. This innovation in payment flexibility allows for maximum useability in

the real world.

Finally, because the STAS standard uses Bitcoin tokens, issuers do not need

to create tokens outside of Bitcoin. Instead, tokens implemented using STAS

have the same durability, inter-operability, and global scalability that Bitcoin

does. They stand to be the only tokens that will outlive the token platform

providers and the issuers, too. That durability is because the tokens are on

the public ledger, allowing anybody to view them with a blockchain explorer.

In the case of STAS-enabled transactions, the blockchain explorer used

would be whatsonchain.com from TAAL.

STAS is most suited for use in the creation of digital twins. Even if the issuer

of the token (custodian of the asset) were to become insolvent, the STAS

token, its rightful owner, its chain of digital signatures, and historical

ownership would still exist, just like the real-world asset that it represents.

Just in the form of a token, rather than a paper-based contract.

The STAS token is not a token layer for a specific use case, it is the

technology that will work for all tokenized use cases. And because it requires

no specific server code, and only small modifications to wallets and block

explorers as well as APIs to support them, they stand to be the most widely

adopted standard, and a compelling use case for the utility value of the

Bitcoin network itself.

2 https:/tsc.bitcoinassociation.net/standards/invoice_based_payments/

21

4.3 How to use STAS
Implementing STAS successfully follows a two-step procedure. First is the

implementation of the token schematics, also known as tokenomics.

Tokenomics refers to the possible movements and uses of Sats that have

been “transformed” (or actualized) from native Bitcoin denominations into a

“minted” token with a legal issuance contract. A user who wants to mint /

issue a STAS token must lock up the defined amounts of Sats in a wallet

address that represents the actual minted STAS tokens. Thus, making it

impossible for any wallet to remove or double-spend the native Sats. It is

the same principal with a working model that so many colored coins in the

past have failed in achieve. (“Colored Coins" loosely refers to a class of

methods that represent and manage real-world assets on top of the Bitcoin

Blockchain.)

The second part of the standard governs the issuance transaction and how

it is sequenced. The sequencing occurs such that all supporting wallet and

public node infrastructures understand how to interpret and support the

STAS token ecosystem, by providing the needed authenticity (origin) checks.

As mentioned STAS is implemented by native Bitcoin script. These scripts

are in the form of transaction templates, which impose restrictions on the

usability of a UTXO or unspent transactional output, containing a certain

number of Sats.

4.3.1 Special Restrictions on Outputs via Smart
Token Scripts

The basic notion is to lock or restrict the usage of transaction outputs

through Bitcoin script. That protocol requires these outputs to continually

persist some associated token meta-data. In addition, these restrictions

mean the outputs cannot be unlocked unless they are sent to a pre-

determined redemption address. The metadata simply consists of a link to

the information of the issuer, the token ID, and a redemption address.

22

More complex types of STAS templates will be able to facilitate more

sophisticated transfer modes and token logic. Those additions will be

introduced as STAS grows. Some of the coming features requires enterprises

and regulated companies to include the following token functionalities: auto-

expire, callability, drag-along contract, token recovery, collective signatures,

allow lists, exchangeability, whitelisting/blacklisting, voting, authenticity of a

person’s identity, integration with other token standards, token swapability

of SH-256-based tokens (from BSV, BCH, and BTC, as well as other

tokenization protocols), wrapping and interoperability with other blockchains

in the future.

4.3.2 STAS Token lifecycle explained

To use the STAS script, TAAL has developed an SDK in Go and JavaScript

that allows the functionalities of the STAS script to be integrated and can

be utilized to build a transaction to issue, transfer, trade, or redeem a token

using the STAS locking and unlocking script.

The SDK gives developers the ability to build any type of application on top,

using the high-level functions rather than the low-level locking and unlocking

scripts.

23

Figure 3: STAS Token Lifecycle

24

A typical lifecycle to issue a STAS token consists of the creation, issuance,

transfer, and redemption of a token. However, there are multitudes of use

cases that may require the ability to also merge and split tokens as a whole

or in a fractionalized form. The above (Figure 2) illustrates an example

lifecycle for any type of token issuance.

1. The client defines the token scheme for the terms and conditions of

the STAS tokens to be issued.

2. The system ensures that the client’s wallets contain the spendable

Sats.

3. The client builds a contract transaction that contains the terms and

conditions that includes the amount of Sats that the script will lock

and transform into tokens during the minting process.

4. The client signs the contract and subsequent transactions with a

private key, which are submitted to the blockchain.

5. Once submitted to the blockchain, the STAS locking script locks the

Sats. That step transforms them into spendable, minted (issued) STAS

tokens.

6. Once the minting is completed, the STAS tokens are transferable using

the STAS locking or unlocking scripts functions.

7. The redemption takes place once a STAS token is sent back to the

issuer address.

8. The redeemed STAS token is unlocked from the STAS locking script

and returned to a native Satoshi, which can be spent in the normal

way or minted again under a new contract transaction.

For a full list and explanation of the various functionalities of the STAS SDK,

please refer to the appendix, where each functionality is explained in more

detail.

25

To date there is still no common language when it comes to what comprises

a Layer 0 (native blockchain or “on-chain” solutions), 1 (Integration), 2

(Applications) or even Layer 3 (digital apps also called dApps) architecture

and why any of them should be built on a certain token solution and / or

protocol. Depending on the website visited 3BSV, ETH, SOL, ADA, and others

tend to only be referred to as existing as a Layer 1 solution. Herein, we refer

to the fact of BSV forming the native Bitcoin scripts that are “on-chain”,

which allows the building of token solutions on top of it. In other words, BSV

is the underlying protocol that makes it possible to build token solutions on

which smart contracts can be issued. For this purpose, we explain the

different types of Layers.

• Layer 2: All the token logics are executed on external servers, and

only a proof-of-execution or events is on-chain. The Bitcoin is used

only as a data-carrier. For example, see Tokenized.com and Run.sv.

• Layer 1: The token logic is on-chain; however, the balance

representation and tokens exist in additional data structures,

unrelated to and decoupled from the Bitcoin. For example, see sCrypt.

• Layer 0: This layer is like Layer 1, except that the tokens are the

Bitcoins. The conferring meaning to a Bitcoin native token (Sats) is an

open standard, and restrictions are applied to Sats through the native

Bitcoin script. For example, STAS.

In this white paper we have included the various types of technology

architectures that can be utilized to build out a blockchain use case and

explain the difference of the layers in more details, please refer to the

appendix.

3 https://zycrypto.com/blockchain-layers-explained-what-are-they-and-why-do-we-need-layer-solutions/

about:blank

26

4.3.3 STAS Layer 0 Architecture

In the Layer 0 architecture, the token logic (that governs the transferability

of tokens) exists in Bitcoin. Thus, there is no need for private servers running

the token transfer logic, and the wallet applications need simple modification

to recognize the balance of a specific token.

The balance and accounting logic, and all the need to synchronize the

balances depend on the public blockchain as the ledger. Bitcoin has been

shown as a scalable way to ensure a global synchronized ledger.

In this layer, there is a need for of an authenticity check, which is an

extraction of evidence of genuineness from the blockchain, which can run by

installing local open-source software by the applications or wallets, or for

profit by the third-party businesses of validation through public data

extraction. In the case of TAAL clients it is possible to use the toolsets

provided (SDK) and the whatsonchain.com explorer. By using our API

endpoints, it is possible to fetch information related to ensuring if in fact a

token is valid and if it represent a token from the desired origin. The

technology of such a validator is the same as the current blockchain

explorers and it is expected that most blockchain explorers will optionally

provide this service to the ecosystem, alongside enterprise solution

providers.

27

Figure 4: Layer 0 architecture of STAS

4.3.4 Locking TX Outputs

Bitcoin transactions use locking and unlocking scripts, which are executed

together to verify a transaction. A locking script is a spending condition

specified in the transaction output, and an unlocking script satisfies this

condition when the two scripts are executed together.

To fully understand the STAS locking / unlocking scripts we want to explain

the components and how they work together to allow a user to work with

the STAS token scripts.

As outlined already, restrictions are implemented by way of creating outputs

using a certain concept also known in Bitcoin language as a “template”. For

STAS we implemented the concept / template named P2STAS or “Pay to

STAS”. This is similar to the P2PKH concept. The P2PKH concept stands for

“Pay to Public Key Hash”. The Public Key Hash is one of many formats of the

Bitcoin address, the other being “Pay to Script Hash”. At the most basic level,

P2PKH means “pay to this Bitcoin address”4.

4 https://wiki.bitcoinsv.io/index.php/Bitcoin_Transactions#Pay_to_Public_Key_Hash_.28P2PKH.29

28

Fundamentally, the template for a P2STAS Token output, consists of the

following components:

• variable component (see example below 202)

• constant component (see figure below 204)

The rules are enforced by code in the constant component called the token

mechanics subcomponent.

Figure 5: Components of a STAS “Smart Token” locking script; a P2STAS

template

The variable component is identical to regular Bitcoin’s payment template

that passes on possession of the tokens through ECDSA usage (Elliptic Curve

Digital Signature Algorithm (ECDSA) and offers a variant of the Digital

Signature Algorithm (DSA), which uses elliptic curve cryptography.5

The constant component as shown in the figure above consists of two sub-

components:

• token mechanics sub-component (See figure above), it contains the

rules enforcing the code; and

5 https://wiki.bitcoinsv.io/index.php/Elliptic_Curve_Digital_Signature_Algorithm

29

• constant data sub-component (See figure above), which includes the

token meta-data that must now be persisted and carried over through

token transfers. The constant data-sub-component prevents a token

information from being ‘lost”. Tokens are lost when a wallet that does

not support the protocol strips the metadata off the coins on

spending, thus losing the information and destroying the token.

According to one aspect disclosed here, a computer-implemented method

of sending digital tokens using blockchain transactions is provided. Each

token is represented by a single unit of an underlying digital asset (i.e.: native

units) of the blockchain. The method comprises generating a first token

transaction and transmitting the first token transaction to the blockchain

network. The first token transaction comprises a first token output and the

first token output comprises a first token locking script and a first token

amount. The first token locking script comprises a variable component and

a constant component.

The variable component comprises a first payment address embedded in a

payment template.

The constant component comprises a token mechanics sub-component.

When executed alongside an input script of a spending transaction (with the

input script including a respective locking script and an amount locked in a

previous transaction output that is being spent), the token mechanics sub-

component is configured to perform the following operations:

 A first operation comprises obtaining one or more data pairs from the input

script of the spending transaction. Each data pair comprises: i) at least a

respective payment address included in a respective locking script of the

spending transaction outputs; and ii) a corresponding amount of the

underlying digital asset locked by the respective locking script of that output.

30

Another operation includes verifying that one or more outputs of the

spending transaction of a respective locking script comprises a) a respective

payment script template that includes a predetermined payment address; or

b) a respective variable component with a respective payment address other

than the predetermined payment address, followed by the constant

component.

For those one or more outputs of the spending transaction, another

operation requires the verification that a total amount of the underlying

digital asset locked by the respective locking scripts (of the one or more

outputs) is equal to the first token amount. The token mechanics sub-

component is configured to fail during execution if any of verification steps

fail.

4.3.5 The Variable Component

The variable component is the part of the token locking script that allows

tokens to be moved to another party. The variable component includes

payment template containing (e.g., surrounding) a payment address. The

payment address may be based on a public key of a recipient party. For

instance, the payment address may be a public key hash (PKH) address, that

is, a hash (or double hash) of a public key.

This part is intentionally at the beginning of the script and is just a regular

P2PKH template. The reason for this placement is to allow for maximum

possible compatibility with existing wallets and browsers, providing their

searches by specific raw ECDSA addresses wrapped with this fixed

template. This is the feature that designates the current holder of a token.

31

4.3.6 Constant Component (Token Mechanics)

The constant component is the token’s code. It features include: 1) self-

immutability; 2) impossibility of its own omission; and 3) most importantly,

preservation of token amounts. That means it locks the tokens, letting their

amount (whole or in part) neither to be leaked as miners’ fees nor spent to

any other than its own smart-locking script format outputs (unless

redeemed to a specified address, encoded upon issuance).

For a token to be spent, assigned, or otherwise transferred (and, therefore,

continue to function as a token), a spending transaction must have in its next

output a locking script of the same format as a previous transaction output

(UTXO) that is being spent. Like the token transaction output, which is being

spent, the spending transaction, in order to be able to be successfully

transmitted, must include an output having a locking script that has the

same constant component of the new token output. This constant part can

neither be changed nor omitted through a token’s lifetime until its

redemption. Meaning that if you want to spend a token, it’s only doable if

the next UTXO has the same locking script (P2STAS) as the UTXO being spent

has, apart from new owner address update.

Spending by a transaction with a UTXO via regular Bitcoin locking scripts

(P2PKH, P2PK, and so on) fails, unless it is a P2PKH type to the redemption

address set in the contract upon its issuance. Meaning, only the issuer who

determined the constant component of the token, can designate the

redemption address that can convert an asset representing STAS back into

its original native bitcoin sats (by releasing underlying assets, e.g., USD, gold,

and so on), which removes the need for administrative servers.

In summary, it makes native tokens regular usage impossible while enforcing

newly defined ones, thus changing their nature and behavior.

32

This effect means that each single unit of the underlying digital asset now

represents a redefined single token and stops its regular functioning. To

continue with the example of the Bitcoin blockchain, a single Satoshi is now

redefined as a single token. The owner of the token(s) cannot move the

token(s) to another user unless the locking script contains the same constant

component, which enforces new token mechanics. All that can be changed

in the locking script is the variable component, which may be a standard

template (e.g.: used in the same manner as in native tokens of the underlying

asset) responsible for transferring control. That is, it enables the current

controller to move some or all the token(s) to the next controller, according

to an address included in a standard template.

Put another way, unlike previous attempts that rely on metadata

attachments to represent a token, the tokens of the STAS invention are

single units of the underlying digital asset that have been reconfigured to

function as distinct entities, operating by different rules (encoded in

themselves).

The tokens can be converted back into the underlying digital asset, i.e. to be

used once again as the native token, if and only if the tokens are subject to

satisfying particular conditions encoded in the above constant part of the

script (e.g.: a movement to predetermined redemption address). Only a

hardcoded user or authority (such as the entity that has control over the

redemption address) has the ability to turn the tokens back into the regular

underlying digital asset’s nature, restoring their original functioning, thus

“destroying” the redeemed token.

The amount of Satoshis that represent a token upon spending must be one

of the following:

• unaltered — in case of plain transfer (either an envelope or a single-

token type).

• split in two — in case of spending TX having two outputs (partial

spending with change) each with locking scripts identical to the one

being spent apart from the owner address (envelope type only).

33

What constitutes the state pushed in these stateful TXs is the controlling

address updated each hop AND (only in case of envelope-type with multiple

tokens) the number of tokens (that may be reduced through splitting).

In other terms, the constant component data consists of a link to the issuer’s

information, the Token ID, and the redemption address.

Each Sat transformed to a STAS now represents a token and ceases its

regular functioning, although it can represent something cheaper or more

expensive than 1 Satoshi itself. A user cannot move tokens unless this exact

template, preserved as a locking script in sending a transaction output, exists

and then all that can be changed is the owner’s address in the variable part.

This is unlike “colored coin” implementations, which make coins differ from

the others only by carrying some metadata attachments on them. This

technique locks Satoshis to a specific spending pattern and locks that

metadata to a spending template. It can be considered a form of reversible

burning of the Sats.

As P2STAS requires P2PKH at the beginning of the template, a wallet needs

to concatenate (to be able to spend the transaction) to the sub-template of

the whole constant component of the STAS token output that is being spent

into the constant section of the new smart token output. If this cloning of

the constant component of the previous STAS output is not done, then the

transaction validation/transmission will fail. The script in the constant

section includes code that checks that it is replicated and includes no

modifications, and that the only way a STAS can be paid to an output which

is not itself a STAS smart token is if it is sent to the redemption address,

hardcoded immutably in script itself.

In summary, the movement of STAS outputs can be visualized below:

34

Figure 6: Valid transactions involving STAS outputs

4.3.7 STAS token Transaction Chain and
Authenticity Checks

As mentioned earlier, the other required aspect of the standard is the way

in which authenticity of any given STAS token can be verified by network

services that support the STAS standard. This check can be performed by

any service that runs a fully validating Bitcoin node (if not using specific

software that keeps only specific token relevant parts of the blockchain) that

are offered by TAAL, Mempool or Mattercloud and others.

This includes all miners and transaction processors, but the creation of

blocks is not a requirement for such a service provider to provide the

authenticity check for STAS tokens. As the STAS standard states any

issuance transaction should follow a certain format and include certain

information fields (such as the redemption address) and follow an initial

contract transaction. It is a simple task for any STAS verifier to keep track

of which outstanding UTXOs are genuine STAS (issuance of which occurred

on the blockchain from the address and symbol combination that is

immutably hardcoded in every token) out of the total UTXO set.

35

This can be done in one step (O(1) complexity). This simple method allows

for the greatest scalability as it avoids any need for creation of additional

indexing systems for wallets/services, which at scale will become an

unnecessary and burdensome challenge. Instead, it extracts the data from

the existing native system of Bitcoin itself, making it naturally compatible

with Bitcoin’s own scalability. Generally, for Bitcoin the scalability is achieved

by the fact that a node only needs to keep track of the valid UTXO set, and

not the entire history of the blockchain, to validate transactions.

Based on the STAS standard, it also becomes possible that a token is

supported by any wallet that supports Bitcoin, with minimal addition of

tagging a subset of the total UTXO set. This allows for the greatest possible

interoperability between token ecosystems and platforms, as specialized

wallets are not required.

4.3.8 STAS Transaction Sequence

STAS tokens are created by transforming (actualizing) Satoshis (Sats). This

is done by creating a contract transaction, followed by an issuance

transaction. The contract transaction is a normal transaction, and it simply

pre-allocates the number of Sats to be transformed into STAS. In the

contract transaction, the issuer sends the Sats to the issuance address,

which is also part of the Token ID that becomes immutably set in the STAS

tokens that are issued. Next, the issuance transaction, is one that is paid to

the first recipient of the tokens, and must be made from that issuance

address, which at the same time is the Token ID and symbol (e.g.: Protocol

ID). This is also known as the “origin” transaction for the given minting of the

token. This origin transaction must be the ancestor to any valid STAS token

of this issuance. If a token cannot be traced back to an origin transaction

from an address that is the same as the redeem address used in a token ID,

then it is not an authentic STAS token.

36

Figure 7: Creation of STAS tokens; transformation happens at the Issuance

transaction

The below graphic shows on a high level a very basic flow of the

transaction chains from the legal contract that was issued as a contract

transaction and a separate issuance transaction in STAS tokens to Alice,

who then allows Bob to purchase services by a merchant, who then

redeems the tokens back.

37

Figure 8: Typical flow of STAS contract and issuance (origin) transaction

and transfers

4.3.9 A Public Overlay Network of Authenticity
Verifiers

The final piece of the STAS infrastructure is a network of STAS-aware

verifiers, or full nodes that can fill the requests of wallets to check whether

any given STAS token is authentic. While the Bitcoin script governs the

transferability of any authentically issued STAS tokens, it cannot by itself

verify that it is a descendant of a valid issuance transaction.

38

For example, take the case of tokens that represent car ownership used to

operate smart cars in the future. A malicious agent may attempt to take

some generic Satoshis, and voluntarily lock them with a copy of the same

STAS locking script that the valid issuer of the car tokens used to represent

the automobile ownership registrations. This perpetrator would then try to

pass this token off to a buyer who he intends to trick into believing that it is

truly the digital token linked to a specific automobile. The malicious agent is

attempting to “steal” the asset. While the transaction that the malicious

agent could construct would still be a valid Bitcoin transaction (nothing stops

anyone from putting arbitrary limitations on the transferability of their own

Bitcoins), this fake STAS token would not have a history that traces back to

the original issuance transaction created with the public key of the registered

issuer and at the same time be immutably written in token's script code. The

system would recognize it as invalid.

4.3.10 Comparison of BSV Layer Token solutions

Opposed to other token blockchain protocols with one common smart

contract standard, BSV allows that anyone can build their own token

solutions on top of the native Bitcoin scripts. However, it has to be noted

that for each different type of solution a deep understanding is required to

develop a token solution, as it does follow a different logic than an account-

based framework (e.g., Solana, Ethereum, Polkadot, Polygon, and so on.) over

the blockchain protocol as explained in the introduction section of the white

paper.

To ensure a broader understanding for the reader and to provide an overview

over the different type of token solutions available on BSV we have compiled

a comparison between the different token solutions. However, there is only

one solution that does fulfill our definition of being a Layer 0 solution that

directly utilizes the native Bitcoin script, namely STAS.

39

Table 4: Comparison of different Layer token solutions on BSV

4.4 STAS Satoshi’s to Value explained
Bitcoin is an information and data carrier commodity. Its value has always

been rooted in its ability to convey, store, record, attest, and trade

information.

40

Instead of waiting until the utility of Bitcoin rises to the point where the value

of BSV appreciates, trusted banking intermediaries could simply issue tokens

and back them with real-world assets. These STAS tokens would be worth

more than open-market Satoshi’s but discounted by the credit risk of the

issuer. The difference of the value of a fiat-pegged STAS over open-market

STAS could also be the value of that trusted intermediary’s credit.

Seen this way, transformed (actualized) Sats can have pegged values, and

the value of Bitcoin appreciates based on its utility value of being a useful

vessel for these substantiated tokens, after all there are only 2.1 quadrillion

of these vessels available for actualization, and some of these vessels are

busy being used as money itself. (Though at a significant risk-discounted

value). The figure below illustrates the value spectrum of the different uses

of Satoshi’s, from fully as money to fully as asset vessels for substantiated

tokens representing real-world assets.

Figure 9: The value representation spectrum of Bitcoin’s Satoshi’s (Sats)

41

Table 5: Comparison of value regimes for Satoshi use cases

4.5 Tokenization with STAS benefits
Utilizing the STAS script provides many benefits over the usage of other

token solutions in BSV or compared to other blockchain protocols.

• Single toolset that offers read/write ability to create and sign

transactions that wraps the STAS script through a tested and audited

SDK that can issue, transfer, redeem, swap, create, and submit

financial and/or data transaction.

• Deliver efficiency gains through the transfer of value without the need

for trusted centralized intermediaries:

o Smart contracts can reduce the cost of issuing and administering

securities, and further reduces the cost of transactions.

o STAS token contracts solution can keep track of and allow an

infinite trace over the following non-complete list to facilitate the

following: corporate actions (coupon or dividend payments,

voting), escrow arrangements (release of funds), and collateral

management (exchange of ownership interest).

42

o No infrastructure required for the issuer to use the technology.

o STAS solution allows the Sat-to-value point to be fixed by an

issuer who transforms (“actualizes”) a Satoshi.

o With a small amount of effort any existing BSV wallet can be

modified to recognize STAS tokens.

o Reduces the risks of dependency to external servers (connectivity

issues, hacking, or should the supporting company cease

operations) by using STAS.

• In case of a company that has issued tokens using STAS becomes

insolvent, it provides proof of ownership that can help to redeem the

underlying values as the proof of ownership, based on the deployed

tokenomics and legal claim details available on the blockchain.

• Any use case can be built on top with minimal requirements of

integration or third-party dependencies as the token solution is simple

to use and well-integrated to all services offered by TAAL.

• TAAL ensures that the STAS script, SDK, and APIs follow best practices

and have undergone a third-party audit, performed by Trail of Bits.

Please note that the audit report also entails internal relevant details,

and thus the detailed report cannot be shared.

43

5 Appendix

5.1 Tokenization solution layers
Below are different types of tokenization layer architecture.

5.1.1 Layer 2 architecture

The difference between the main architectures is that the Layer 2 solutions

require off-chain (private) servers to run the token logic and maintain

balances. However, the Layer 0 solutions require only public validators to

service an authenticity check that wallet users will require, which anyone

can run.

The balance logic depends on Bitcoin. The wallet applications that support

Layer 2 tokens need extensive changes to maintain balances and intimate

knowledge of the L2 token protocol. The wallet applications depend on the

private token servers for authenticity, balance updates, and trust.

The following image shows a Layer 2 architecture.

Figure 10: Layer 2 architecture

44

5.1.2 Hybrid architecture

The hybrid architecture has a private server executing the complex business

token logic, which uses Layer 0 in the backend for the token representation.

It combines the characteristics of both architectures and provides a

migration path for the existing platforms with an existing UI and wallet

ecosystem. This process can be implemented using threshold signatures to

control the movement of the base Layer 0 token with the private token

servers having a part of the signing keys.

The following image shows the hybrid architecture.

Figure 11: Hybrid architecture

5.1.3 Layer 1 architecture

In the Layer 1 architecture, the token logic (that governs the transferability

of tokens) exists in the Bitcoin. Thus, there is no need for private servers

running the token transfer logic, and the wallet applications need simple

modification to recognize the balance as a specific token ID.

45

The difference in balances is stored in the transaction as data, and the

wallets are required to decode and store their own balances. The wallets

must be customized like the Layer 2 architecture.

The following image shows the Layer 1 architecture.

Figure 12: Layer 1 architecture

5.2 STAS functionality
The following table describes the STAS functionalities on a high level. The

detailed usage of the functionalities can be found in the technical

documentation.

46

Table 6: STAS functionality

